کارایی شبکه های عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدل سازی بارش- رواناب در حوضه آبخیز سد زاینده رود
Authors
abstract
در دهه های اخیر به دلیل اهمیت یافتن مسئله آب و همینطور افزایش تمایل به محاسبه مقدار رواناب حاصل از بارش، توسعه و اجرای روشهای مناسب برای پیش بینی رواناب از روی داده های بارش به مسئله ای ضروری تبدیل شده است. یکی از این روشها که در بسیاری از رشته ها از جمله هیدرولوژی توسعه یافته است، استفاده از روشهای محاسبات نرم نظیر منطق فازی و شبکه های عصبی مصنوعی است. در این تحقیق سعی گردید کارایی شبکه عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی به منظور برآورد بارش- رواناب در حوضه سد زاینده رود، مورد ارزیابی قرار گیرد. به این منظور ابتدا با بهره گیری از نرم افزار wingamma داده ها و پارامترهای موجود مورد بررسی و تجزیه و تحلیل قرار گرفت و پارامترهای ورودی مناسب به علاوه تعداد مناسب داده برای آموزش شبکه، تعیین گردید. سپس با استفاده از آمار روزانه بارش- رواناب، کارایی شبکه عصبی مصنوعی و سیستم عصبی- فازی در تخمین رواناب حاصل از بارش مورد بررسی قرار گرفت. در ادامه میزان دقت و صحت این دو روش با بهره گیری از روشهای آماری، مقایسه شد. نتایج حاصل از این مطالعه نشان داد که شبکه عصبی مصنوعی و سیستم فازی- عصبی در شرایط مختلف و با ترکیبهای مختلف پارامترهای ورودی، نتایج متفاوتی از خود نشان می دهند ولی در کل این دو روش به میزان قابل قبولی قادر به تخمین رواناب حاصل از بارش با به کارگیری پارامترهای ورودی مناسب و استفاده از ساختارهای مناسب شبکه عصبی مصنوعی و شبکه عصبی- فازی، هستند.
similar resources
کارایی شبکههای عصبی مصنوعی و سیستم استنتاج عصبی- فازی تطبیقی در مدلسازی بارش- رواناب در حوضه آبخیز سد زایندهرود
در دهههای اخیر بهدلیل اهمیت یافتن مسئله آب و همینطور افزایش تمایل به محاسبه مقدار رواناب حاصل از بارش، توسعه و اجرای روشهای مناسب برای پیشبینی رواناب از روی دادههای بارش به مسئلهای ضروری تبدیل شده است. یکی از این روشها که در بسیاری از رشتهها از جمله هیدرولوژی توسعه یافته است، استفاده از روشهای محاسبات نرم نظیر منطق فازی و شبکههای عصبی مصنوعی است. در این تح...
full textمدل سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
مدلسازی فرآیند بارش - رواناب و پیشبینی دبی رودخانه یک اقدام مهم در مدیریت و مهار سیلابها، طراحی سازههای آبی در حوزههای آبخیز و مدیریت خشکسالی است. هدف این تحقیق شبیهسازی جریان روزانه در حوزه آبخیز کسیلیان با استفاده از شبکه عصبی مصنوعی و شبکه عصبی- فازی تطبیقی است. روشهای هوشمند دارای قابلیت بالایی برای برقراری ارتباط بین دادههای ورودی و خروجی میباشند. در این تحقیق از آمار بارش، تبخیر ...
full textمدلسازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی و شبکه فازی- عصبی تطبیقی در حوزه آبخیز کسیلیان
Rainfall runoff modeling and prediction of river discharge is one of the important practices in flood control and management, hydraulic structure design and drought management. The present article aims to simulate daily streamflow in Kasilian watershed using an artificial neural network (ANN) and neuro-fuzzy inference system (ANFIS). The intelligent methods have the high potential for dete...
full textشبیه سازی بارش- رواناب با استفاده از شبکه عصبی مصنوعی(مورد: حوضه آبخیز فریدن)
سیل، یکی از پدیدههای ویرانگر طبیعی است که پیشبینی آن از اهمیت بالایی برخوردار است و در این میان برآورد بارش- رواناب به دلیل تأثیرگذاری عوامل مختلف، دشوار است. در این پژوهش با استفاده از شبکه پرسپترون چند لایه(MLP)، قانون یادگیری پسانتشار خطا(BP)، الگوریتم لونبرگ- مارکوارت(LM) و معیارهای RMSE و R2 جهت کارایی مدل، 6 سناریو تعریف گردید. بررسی حالات مختلف نشان داد که بهترین مدل شبکه عصبی جهت شبی...
full textمقایسه کاربرد شبکه عصبی مصنوعی (ANN) با سیستم استنتاج فازی (FIS) در پیش بینی جریان رودخانه زاینده رود
یکی از روشهای نو ظهور در حل مسایل مهندسی جهت مدلسازی سیستمهایی که دارای پیچیدگی زیاد یا عدمصراحت بوده و یا دادههای کافی از آنها موجود نیست، استفاده از تئوری مجموعههای فازی و شبکه عصبی مصنوعی میباشد. مزیت اصلی این تکنیکها نسبت به روشهای رایج این است که در مدت زمان نسبتاً کوتاهی قادر به بررسی تأثیر انواع پارامترهای در دسترس، بر فرآیند مورد بررسی میباشند بدون آنکه در هر مرتبه نیاز به یافتن...
full textپیشبینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی
مدلهای مفهومی بر مبنای هوش مصنوعی، اغلب برای پیشبینیهای کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیشبینیها1 (ESP) و تفکیک مدلسازی برای متغیرهای اقلیمیو هیدرولوژیکی، از مدلهای مفهومی برای پیشبینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده میشود. سیستم استنتاج فازی برای پیشبینی بار...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علمی- پژوهشی آب و فاضلابPublisher: مهندسین مشاور طرح و تحقیقات آب و فاضلاب
ISSN 1024-5936
volume 22
issue 4 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023